Prostaglandins do not contribute to the nitric oxide-mediated compensatory vasodilation in hypoperfused exercising muscle.

نویسندگان

  • Darren P Casey
  • Michael J Joyner
چکیده

We tested the hypothesis that 1) prostaglandins (PGs) contribute to compensatory vasodilation in contracting human forearm subjected to acute hypoperfusion, and 2) the combined inhibition of PGs and nitric oxide would attenuate the compensatory vasodilation more than PG inhibition alone. In separate protocols, subjects performed forearm exercise (20% of maximum) during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included baseline, exercise before inflation, exercise with inflation, and exercise after deflation. Forearm blood flow (FBF; ultrasound) and local (brachial artery) and systemic arterial pressure [mean arterial pressure (MAP); Finometer] were measured. In protocol 1 (n = 8), exercise was repeated during cyclooxygenase (COX) inhibition (Ketorolac) alone and during Ketorolac-NOS inhibition [N(G)-monomethyl-l-arginine (l-NMMA)]. In protocol 2 (n = 8), exercise was repeated during l-NMMA alone and during l-NMMA-Ketorolac. Forearm vascular conductance (FVC; ml·min(-1)·100 mmHg(-1)) was calculated from FBF (ml/min) and local MAP (mmHg). The percent recovery in FVC during inflation was calculated as (steady-state inflation + exercise value - nadir)/[steady-state exercise (control) value - nadir] × 100. In protocol 1, COX inhibition alone did not reduce the %FVC recovery compared with the control (no drug) trial (92 ± 11 vs. 100 ± 10%, P = 0.83). However, combined COX-nitric oxide synthase (NOS) inhibition caused a substantial reduction in %FVC recovery (54 ± 8%, P < 0.05 vs. Ketorolac alone). In protocol 2, the percent recovery in FVC was attenuated with NOS inhibition alone (69 ± 9 vs. 107 ± 10%, P < 0.01) but not attenuated further during combined NOS-COX inhibition (62 ± 10%, P = 0.74 vs. l-NMMA alone). Our data indicate that PGs are not obligatory to the compensatory dilation observed during forearm exercise with hypoperfusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local control of skeletal muscle blood flow during exercise: influence of available oxygen.

Reductions in oxygen availability (O(2)) by either reduced arterial O(2) content or reduced perfusion pressure can have profound influences on the circulation, including vasodilation in skeletal muscle vascular beds. The purpose of this review is to put into context the present evidence regarding mechanisms responsible for the local control of blood flow during acute systemic hypoxia and/or loc...

متن کامل

HIGHLIGHTED TOPIC Hypoxia Muscle blood flow, hypoxia, and hypoperfusion

Joyner MJ, Casey DP. Muscle blood flow, hypoxia, and hypoperfusion. J Appl Physiol 116: 852– 857, 2014. First published July 25, 2013; doi:10.1152/japplphysiol.00620.2013.—Blood flow increases to exercising skeletal muscle, and this increase is driven primarily by vasodilation in the contracting muscles. When oxygen delivery to the contracting muscles is altered by changes in arterial oxygen co...

متن کامل

Muscle blood flow, hypoxia, and hypoperfusion.

Blood flow increases to exercising skeletal muscle, and this increase is driven primarily by vasodilation in the contracting muscles. When oxygen delivery to the contracting muscles is altered by changes in arterial oxygen content, the magnitude of the vasodilator response to exercise changes. It is augmented during hypoxia and blunted during hyperoxia. Because the magnitude of the increased va...

متن کامل

ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine.

Plasma ATP is thought to contribute to the local regulation of skeletal muscle blood flow. Intravascular ATP infusion can induce profound limb muscle vasodilatation, but the purinergic receptors and downstream signals involved in this response remain unclear. This study investigated: 1) the role of nitric oxide (NO), prostaglandins, and adenosine as mediators of ATP-induced limb vasodilation an...

متن کامل

Adenosine contributes to blood flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation.

Adenosine can induce vasodilation in skeletal muscle, but to what extent adenosine exerts its effect via formation of other vasodilators and whether there is redundancy between adenosine and other vasodilators remain unclear. We tested the hypothesis that adenosine, prostaglandins, and NO act in synergy to regulate skeletal muscle hyperemia by determining the following: (1) the effect of adenos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 301 1  شماره 

صفحات  -

تاریخ انتشار 2011